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SOME PROPERTIES OF F–FUNCTION OF SET

Jupil Kim*

Abstract. In this paper we shall introduce the f -function in a set, and
give some properties of f -function of a set. In particular, we establish a
relation between f -function of a set and fuzzy equivalence relation. We also
introduce the notion of f -homomorphism on a semigroup S, and prove the
generalized fundamental homomorphism theorem of semigroup.

1. Introduction

After Zadeh introduced fuzzy set, many researchers are engaged in ex-

tending the concepts and results of pure algebra to broader framework of

the fuzzy setting although not all the results in algebra can be fuzzified.

The concept of fuzzy set was applied to the elementary theory of groupoids

in Rosenfeld [11] and of semigroups and groups in the author’s papers [4].

Fuzzy semigroups were introduced in [11] and discussed further in [8]. N.

Kuroki has studied fuzzy ideals and bi-ideals in a semigroup [7]. Many

classes of semigroups were studied and discussed further by using fuzzy

ideals [6]. The reader may refer to [1], [2], [3], [5] and [10] for the basic

theory of semigroup.

Fuzzy relations of a set also have been studied since the concept of fuzzy

relations was introduced by Zadeh [13]. Crisp congruence relations and

ideals on semigroup play an important role in studying algebraic structures

of semigroup.

Recently, fuzzy congruence relation on semigroup and groups appears in

[4]. For semigroup S, Samhan obtained that the lattice of fuzzy congruence
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on a semigroup S is complete lattice. In section 3, we introduced a f -

function from set X to set Y , which is a kind of fuzzy relation, and proved

an important connection between fuzzy equivalence relation and f -function

of set. In particular, we attempt to give some study of fuzzy congruence

relation generated by f -homomorphism of semigroup S.

2. Definitions and preliminaries

For any nonempty set X, a function θ from X to the unit interval [0, 1] is a

fuzzy subset of X. Let θ and ψ be two fuzzy subsets of X. Then the inclusion

relation θ ⊂ ψ is defined by θ(x) ≤ ψ(x) for all x ∈ X. θ ∩ ψ and θ ∪ ψ are

fuzzy subsets of X defined by (θ ∩ ψ)(x) = min{θ(x), ψ(x)}, (θ ∪ ψ)(x) =

max{θ(x), ψ(x)} for all x ∈ X.

Fuzzy (binary) relation from X to Y is a fuzzy subset of X × Y . Ac-

cordingly, unless otherwise stated, by a fuzzy relation of a set X we mean a

fuzzy binary relation R given by a function R : X ×X → [0, 1].

Definition 2.1. ([9]) Let X be a nonempty set and R be a fuzzy relation

of X. Then R is called a fuzzy equivalence relation of X if

(1) R(x, x) = 1 for all x ∈ X,

(2) R(x, y) = R(y, x) for all x, y ∈ X,

(3) R(x, y) ≥ supz∈Xmin{R(x, z), R(z, y)} for all x, y ∈ X. (transitive)

Definition 2.2. ([5]) Let A be a fuzzy binary relation from X to Y and

B be a fuzzy binary relation from Y to Z. The composition A◦B is defined

as follows;

(A ◦B)(x, z) = supy∈Y min{A(x, y), B(y, z)}.
It follows from this definition of composition that the property (A ◦B) ◦

C = A ◦ (B ◦ C) is satisfies for all fuzzy binary relations A, B,C.([5])

It is easy that fuzzy relation R on X satisfies transitive law if and only if

R ◦R ⊂ R.

Definition 2.3. Let R be a fuzzy binary relation of a set X and x ∈ X.

Let fuzzy subset Rx : X → [0, 1] is a function defined by Rx(a) = R(x, a)

for every a ∈ X.
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Let R be a fuzzy equivalence relation of X. For each x ∈ X, we shall say

that the fuzzy subset Rx of X is the fuzzy class corresponding to x and the

set {Rx|x ∈ X} of all fuzzy classes of X is called a fuzzy quotient set by R

and denoted by X/R.

Lemma 2.4. ([5]) Let R be a fuzzy equivalence relation of X. Then;

(1) R(x, y) = 0 if and only if min{Rx, Ry} = 0,

(2) supx∈XRx = 1,

(3) there exists the surjection π : X → X/R, π(x) = Rx,

(4) Rx = Ry if and only if R(x, y) = 1.

Just as equivalence classes are defined by equivalence relation, fuzzy

equivalence classes are defined by fuzzy equivalence relation. Except in the

restricted case of equivalence classes themselves, fuzzy equivalence classes

are fuzzy set and are therefore not generally disjoint.

Definition 2.5. For any fuzzy subset θ of X and fuzzy binary relation

R from X to Y and for any A ⊂ X, B ⊂ Y , let sup θ(A) = supx∈Aθ(x) and

sup R(A,B) = supa∈A,b∈BR(a, b).

3. f-function

For a fuzzy subset θ of X and for A ⊂ X we say θ has the sup property

on A if, there exists u ∈ A such that θ(u) = sup θ(A). We call θ has the

sup property if θ has the sup property on A for all A ⊂ X. For example, if

θ can take on only finitely many values (in particular, if it is characteristic

function), it has the sup property. For a fuzzy subset θ of X, A ⊂ X, k ∈
[0, 1], we say θ has (unique) k-sup property on A if sup θ(A) = k and there

exists (unique) u ∈ A such that θ(u) = k

Definition 3.1. Let X, Y are non empty sets. a function h : X × Y →
[0, 1] is called a f -function from X to Y if h satisfies

(1) h has unique 1-sup property on {x} × Y for all x ∈ X.

(2) min{h(a, s), h(a, t), h(b, s)} ≤ h(b, t) for all a, b ∈ X, s, t ∈ Y.
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From above definition we can consider f -function from X to Y is a kind

of fuzzy binary relation from X to Y . Following Theorem shows that char-

acteristic function of any crisp function from X to Y is f -function from X

to Y .

Theorem 3.2. For any function f : X → Y , define χf : X × Y → [0, 1]

by χf (x, y) = 1, if y = f(x) and χf (x, y) = 0, if y 6= f(x). Then χf is a f -

function from X to Y .

Proof. 1) Since f is a function from X to Y , for any a ∈ X, there exist

some b ∈ Y such that b = f(a). Thus χf (a, b) = 1 and we have

sup χf ({a} × Y ) = χf (a, b) = 1.

If there are some c ∈ Y such that χf (a, c) = 1, then by definition of

χf , f(a) = c and so b = c. Hence χf has unique 1-sup property on {a} × Y.

2) Let a, b ∈ X, s, t ∈ Y. If t = f(b), then χf (b, t) = 1 and so

χf (b, t) ≥ min{χf (a, s), χf (a, t), χf (b, s)}

and so χf is f -function. Assume t 6= f(b). If s = t, then s 6= f(b) and so

χf (b, s) = 0. Thus min{χf (a, s), χf (a, t), χf (b, s)} = 0. Hence

χf (b, t) ≥ min{χf (a, s), χf (a, t), χf (b, s)} = 0.

If s 6= t, then since f is a function from X to Y , either (a, s) /∈ f or

(a, t) /∈ f . Hence either χf (a, s) = 0 or χf (a, t) = 0. So,

min{χf (a, s), χf (a, t), χf (b, s)} = 0.

Thus we have

χf (b, t) ≥ min{χf (a, s), χf (a, t), χf (b, s)} = 0

and so χf is again a f -function. ¤
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Theorem 3.3. Let h be a f -function from X to Y . If we define fh =

{(x, y) ∈ X × Y |h(x, y) = 1}, then fh is a function from X to Y .

Proof. For any a ∈ X, since h has unique 1-sup property on {a} × Y

there exists unique b ∈ Y such that h(a, b) = 1. If (a, c) ∈ fh for some

c ∈ Y , then h(a, c) = 1 and since h has 1-unique sup property on {a} × Y ,

(a, b) = (a, c). Thus fh is a function from X to Y . ¤

For any fuzzy binary relation R from X to Y , a fuzzy binary relation

S : Y ×X → [0, 1], S(a, b) = R(b, a) is called a fuzzy inverse relation of R

and is denoted by S = R−1. It is important to note that the fuzzy inverse

relation of a f -function need not be a f -function.

Theorem 3.4. Let h be a f -function from a set X to a set Y . Then

h ◦ h−1 is a fuzzy equivalence relation of X.

Proof. For any x, z ∈ X,

h ◦ h−1(x, z) = supy∈Y min{h(x, y), h−1(y, z)}
= supy∈Y min{h(x, y), h(z, y)}.

1) For any a ∈ X,

h ◦ h−1(a, a) = supy∈Y min{h(a, y), h(a, y)}

= supy∈Y h(a, y) = sup h({a} × Y ) = 1

2) It is easy that for any a, b ∈ X, h ◦ h−1(a, b) = h ◦ h−1(b, a).

3) Fuzzy equivalence relation R is transitive if and only if R ◦R ⊂ R. If

h ◦ h−1 is not transitive, there are some a0, b0 ∈ X such that

(h ◦ h−1) ◦ (h ◦ h−1)(a0, b0) > h ◦ h−1(a0, b0).

Since

(h ◦ h−1) ◦ (h ◦ h−1)(a0, b0) = supy∈Y min{h ◦ h−1(a0, y), h ◦ h−1(y, b0)},
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h ◦ h−1(a0, b0) < min{h ◦ h−1(a0, y0), h ◦ h−1(y0, b0)} for some y0 ∈ Y .

Hence h ◦ h−1(a0, b0) < h ◦ h−1(a0, y0), h ◦ h−1(a0, b0) < h ◦ h−1(y0, b0).

From h ◦ h−1(a0, b0) < h ◦ h−1(a0, y0), we have

h ◦ h−1(a0, b0) < sups∈Y min{h(a0, s), h(y0, s)}

and so there is some s0 ∈ Y such that

h ◦ h−1(a0, b0) < min{h(a0, s0), h(y0, s0)}.

Also from h ◦ h−1(a0, b0) < h ◦ h−1(y0, b0), we have

h ◦ h−1(a0, b0) < supt∈Y min{h(y0, t), h(b0, t)}

and so there is some t0 ∈ Y such that

h ◦ h−1(a0, b0) < min{h(y0, t0), h(b0, t0)}.

So, there are some y0, s0, t0 ∈ Y such that

min{(h(a0, s0), h(y0, s0), h(y0, t0), h(b0, t0)} > h ◦ h−1(a0, b0).

Since h is a f -function, we have min{h(y0, s0), h(y0, t0), h(b0, t0)} ≤ h(b0, s0)

and so
h ◦ h−1(a0, b0) < min{h(a0, s0), h(b0, s0)}

≤ min{h(a0, s0), h−1(s0, b0)}
≤ sups∈Y min{h(a0, s), h−1(s, b0)}
= h ◦ h−1(a0, b0).

We have a contradiction. ¤

For a f -function h from X to Y , we call the fuzzy equivalence relation

h ◦ h−1 of X as f -kernel of h and denoted ker h

Theorem 3.5. If R is a fuzzy equivalence relation of a set X, then there

is a f -function whose f -kernel is R.

Proof. Define

π : X ×X/R → [0, 1], π(a,Rx) = Rx(a) = R(x, a).
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From definition of fuzzy class, π(a,Rx) = R(x, a) = R(a, x). We will show

that π is f -function and the f -kernel of π is R.

It is easy to see that π is well-defined.

1) For any {x} ×X/R ⊂ X ×X/R,

π(x,Rx) = R(x, x) = 1 and π(x,Rx) ≤ sup π({x} ×X/R).

Thus π has 1-sup property on {x} ×X/R. If π(a,Rx) = π(a, Ry) = 1, then

R(x, a) = R(y, a) = 1. From transitivity of R,

R(x, y) ≥ supz∈Xmin{R(x, z), R(z, y)} ≥ min{R(x, a), R(a, y)} = 1.

From Lemma 2.4.(4), Rx = Ry. Thus π satisfies unique 1-sup property on

{a} ×X/R for all a ∈ X.

2) For any a, b ∈ X, Rs, Rt ∈ X/R, from transitivity of R,

R(b, t) ≥ supz∈Xmin{R(b, z), R(z, t)} ≥ min{R(b, s), R(s, t)}
and from

R(s, t) ≥ supz∈Xmin{R(s, z), R(z, t)} ≥ min{R(s, a), R(a, t)},
we have

R(b, t) ≥ min{R(b, s), R(s, a), R(a, t)}.
Thus

π(b,Rt) ≥ min{π(b, Rs), π(a,Rs), π(a,Rt)}
and so π is a f -function. For any a, b ∈ X, since π(a,Ra) = R(a, a) = 1,

π ◦ π−1(a, b) = supRx∈X/Rmin{π(a,Rx), π−1(Rx, b)}
= supRx∈X/Rmin{π(a,Rx), π(b,Rx)}
≥ min{π(a,Ra), π(b,Ra)}
= R(a, b).

Conversely,
R(a, b) ≥ supz∈Xmin{R(a, z), R(z, b)}

= supz∈Xmin{π(a,Rz), π−1(Rz, b)}.
By Lemma 2.4.(3),

supz∈Xmin{π(a,Rz), π−1(Rz, b)}
= supRz∈X/Rmin{π(a,Rz), π−1(Rz, b)} = π ◦ π−1(a, b).

So, π ◦ π−1(a, b) = R(a, b) and thus R is a f -kernel of π. ¤
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Definition 3.6. ([4]) A fuzzy binary relation R of a semigroup S is

called fuzzy left (right) compatible if and only if R(a, b) ≤ R(ta, tb) for all

t, a, b ∈ S (R(a, b) ≤ R(at, bt) for all t, a, b ∈ S).

If G is a group, it is clear that R(a, b) = R(ta, tb)(R(a, b) = R(at, bt)) for

all t, a, b ∈ G for any fuzzy left (right) compatible binary relation R.

Definition 3.7. A fuzzy binary relation R on a semigroup S is called

fuzzy compatible if and only if min{R(a, b), R(c, d)} ≤ R(ac, bd) for all

a, b, c, d ∈ S.

Definition 3.8. A fuzzy compatible equivalence relation R on a semi-

group S is called a fuzzy congruence relation of S.

Theorem 3.9. ([4]) A fuzzy binary relation R of semigroup S is a fuzzy

congruence if and only if it is both a fuzzy left and fuzzy right compatible

equivalence relation of S.

On a semigroup S, the product θ ◦ ψ of two fuzzy subsets θ and ψ of S

is defined by θ ◦ ψ(x) = supx=yzmin{θ(y), ψ(z)} for x = yz, y, z ∈ S, 0 if

x is not expressible as x = yz, for all x ∈ S. As is well known ([3]), this

operation ◦ is associative. a f -function h from a semigroup S to a semigroup

T is called a f-homomorphism if and only if min{h(a, b), h(c, d)} ≤ h(ac, bd)

for all a, c ∈ S, b, d ∈ T .

An f -function h from X to Y is called a f-one to one if and only if

h(a, c) = h(b, c) for all c ∈ Y , then a = b. That is if a 6= b, then there are

some t ∈ Y such that h(a, t) 6= h(b, t). Above Theorem 3.4 and Theorem

3.5 also hold for a fuzzy congruence relation of a semigroup S and a f -

homomorphism from a semigroup S to a semigroup T .

Theorem 3.10. If h is a f -homomorphism from a semigroup S to a

semigroup T , then h ◦ h−1 is a fuzzy congruence relation of S.

Proof. Claim h ◦ h−1 is fuzzy compatible. Let us show

min{h ◦ h−1(a, b), h ◦ h−1(c, d)} ≤ h ◦ h−1(ac, bd)
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for all a, b, c, d ∈ S. If h ◦ h−1 is not fuzzy compatible, then there will be

some a0, b0, c0, d0 ∈ S such that

min{h ◦ h−1(a0, b0), h ◦ h−1(c0, d0)} > h ◦ h−1(a0c0, b0d0).

From

h ◦ h−1(a0, b0) > h ◦ h−1(a0c0, b0d0),

we have

supt∈Y min{h(a0, t), h(b0, t)} > h ◦ h−1(a0c0, b0d0)

and so

h ◦ h−1(a0c0, b0d0) < min{h(a0, t0), h(b0, t0)}
for some t0 ∈ Y . Also from

h ◦ h−1(c0, d0) > h ◦ h−1(a0c0, b0d0),

we have

sups∈Y min{h(c0, s), h(d0, s)} > h ◦ h−1(a0c0, b0d0)

and so

h ◦ h−1(a0c0, b0d0) < min{h(c0, s0), h(d0, s0)}
for some s0 ∈ Y . Hence

h ◦ h−1(a0c0, b0d0)

< min{min{h(a0, t0), h(b0, t0)},min{h(c0, s0), h(d0, s0)}}
= min{h(a0, t0), h(b0, t0), h(c0, s0), h(d0, s0)}
= min{min{h(a0, t0), h(c0, s0)},min{h(b0, t0), h(d0, s0)}}.

Since h is a f -homomorphism,

min{h(a0, t0), h(c0, s0)} ≤ h(a0c0, t0s0),

min{h(b0, t0), h(d0, s0)} ≤ h(b0d0, t0s0).

Hence
h ◦ h−1(a0c0, b0d0) < min{h(a0c0, t0s0), h(b0d0, t0s0)}

≤ supu∈Y min{h(a0c0, u), h(b0d0, u)}
= h ◦ h−1(a0c0, b0d0).

This is a contradiction and so h ◦ h−1 is fuzzy compatible. By Theorem

3.4, we have h ◦ h−1 is fuzzy congruence relation of S. ¤
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Theorem 3.11. ([12]) If R is a fuzzy congruence relation of a semigroup

S, then S/R is a semigroup with the operation Rx∗Ry = Rxy for all x, y ∈ S.

Theorem 3.12. If R is a fuzzy congruence relation of a semigroup S,

then there is a f -homomorphism whose f -kernel is R.

Proof. On above Theorem 3.5, it is sufficient that if R is a fuzzy congru-

ence relation of semigroup S, then

π : S × S/R → [0, 1], π(a,Rx) = Rx(a) = R(x, a)

is a f -homomorphism. Since R is a fuzzy congruence of S, for all a, b ∈
S, Rx, Ry ∈ S/R, min{R(a, x), R(b, y)} ≤ R(ab, xy). Thus

min{π(a,Rx), π(b,Ry)} = min{R(a, x), R(b, y)}
≤ R(ab, xy)

= π(ab,Rxy)

= π(ab,Rx ∗Ry).

This means π is f -homomorphism. ¤

Theorem 3.13. If h is a f -function from a semigroup S to a semigroup

T , there is a f -one to one f -homomorphism h̄ from S/ker h to T such that

π ◦ h̄ = h.

Proof. Recall that π : S × S/ker h → [0, 1],

π(a, (ker h)x) = (ker h)x(a) = (ker h)(x, a) = h ◦ h−1(x, a)

= supy∈T min{h(x, y), h(a, y)}.
Define h̄ : S/ker h× T → [0, 1] by h̄((ker h)a, y) = h(a, y).

We will show that h̄ is f -one to one f -homomorphism such that π◦ h̄ = h.

First we will show that h̄ is well-defined f -function from S/ker h×T to [0, 1]

1) Let (ker h)a = (ker h)b. From Lemma 2.4 (4),

1 = ker h(a, b) = supy∈T min{h(a, y), h(b, y)}.

For a subset {(ker h)a}×T of S/ker h×T, since h has unique 1-sup property,

there are unique u ∈ T such that h(a, u) = 1. If h(b, u) 6= 1, then h(b, u) < 1
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and since h(b, u) < supy∈T min{h(a, y), h(b, y)} = 1, there is some t0 ∈ T

such that h(b, u) < min{h(a, t0), h(b, t0)}. Since h is a f -function,

min{h(a, t0), h(b, t0), h(a, u)} ≤ h(b, u) < min{h(a, t0), h(b, t0)}

This means min{h(a, t0), h(b, t0), h(a, u)} = h(a, u) and it is a contradiction

to

1 = h(a, u) ≤ h(b, u) < min{h(a, t0), h(b, t0)}.

Thus h(b, u) = 1 and so h(a, u) = h(b, u). For x 6= u in T , since h has unique

1-sup property, h(a, x) 6= 1. By the same manner to the above 1),

h(a, x) < supy∈T min{h(a, y), h(b, y)} = 1.

So,

h(a, x) < min{h(a, s0), h(b, s0)} for some s0 ∈ T.

Since h is a f -function,

min{h(a, s0), h(b, s0), h(b, x)} ≤ h(a, x) < min{h(a, s0), h(b, s0)}

Thus

min{h(a, s0), h(b, s0), h(b, x)} = h(b, x)

and so h(b, x) ≤ h(a, x) < 1. Again from h(b, x) < 1,

h(b, x) < supy∈T min{h(a, y), h(b, y)} = 1

and so there is some k0 ∈ T such that h(b, x) < min{h(a, k0), h(b, k0)} and

min{h(a, k0), h(b, k0), h(a, x)} ≤ h(b, x) < min{h(a, k0), h(b, k0)}.

Thus min{h(a, k0), h(b, k0), h(a, x)} = h(a, x) and h(a, x) ≤ h(b, x). We

have h(b, x) = h(a, x). So that h̄ is well-defined function from S/ker h× T

to [0, 1].

Next we will show h̄ is a f -function.

1) For any {(ker h)a} × T ⊂ S/ker h× T, since h has 1-sup property on

{a}×T, we can choose u ∈ T such that h(a, u) = 1. Hence h̄((ker h)a, u)) =
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h(a, u) = 1. If there is v ∈ T such that h̄((ker h)a, v)) = 1, then h(a, v) =

h(a, u) = 1 and from unique 1-sup property of h, u = v and thus h̄ has

unique 1-sup property for any {(ker h)a} × T ⊂ S/ker h× T.

2) For any ((ker h)a, s), ((ker h)a, t), ((ker h)b, s), ((ker h)b, t) ∈ S/ker h×
T,

min{(h̄(ker h)a, s), h̄((ker h)a, t), h̄((ker h)b, s)}
= min{h(a, s), h(a, t), h(b, s)} ≤ h(b, t) = h̄((ker h)b, t).

So that h̄ is a f - function from S/ker h× T to [0, 1].

Since h is f -homomorphism and h̄((ker h)x, y) = h(x, y),

min{h̄((ker h)a, x), h̄((ker h)b, y)} = min{h(a, x), h(b, y)}

and since h is a f -homomorphism,

min{h(a, x), h(b, y)} ≤ h(ab, xy) = h̄((ker h)ab, xy).

By Theorem 3.11, an operation ∗ on S/ker h is (ker h)x ∗ (ker h)y =

(ker h)xy for all x, y ∈ S, we have

min{h̄((ker h)a, x), h̄((ker h)b, y)} ≤ h̄((ker h)ab, xy).

Thus h̄ is a f -homomorphism.

If h̄((ker h)x, t) = h̄((ker h)y, t) for all t ∈ T, then h(x, t) = h(y, t) for

all t ∈ T. From

(ker h)x(y) = (h ◦ h−1)(x, y) = supu∈T min{h(x, u), h(y, u)}
= supu∈T h(x, u) = 1.

By Lemma 2.4 (4), (ker h)x = (ker h)y. Thus h̄ is f -one to one.

Finally, lets show π ◦ h̄ = h. For any a ∈ S, b ∈ T,

π ◦ h̄(a, b) = sup(ker h)x∈S/ker hmin{π(a, (ker h)x), h̄((ker h)x, b)}
= sup(ker h)x∈S/ker hmin{(ker h)x(a), h(x, b)}
≥ min{h ◦ h−1(a, a), h(a, b)} = h(a, b).

If there is some a0 ∈ S, b0 ∈ T such that

h(a0, b0) < sup(ker h)x∈S/ker hmin{(ker h)x(a0), h(x, b0)},
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then there is some (ker h)u ∈ S/ker h such that

h(a0, b0) < min{(ker h)u(a0), h(u, b0)}.
From

h(a0, b0) < (ker h)u(a0) = (h ◦ h−1)(u, a0)

= supt∈T min{h(a0, t), h(u, t)},
h(a0, b0) < min{h(u, t0), h(a0, t0)} for some t0 ∈ T. Hence

h(a0, b0) < min{h(u, t0), h(a0, t0), h(u, b0)}.
But since h is a f function,

min{h(u, t0), h(a0, t0), h(u, b0)} ≤ h(a0, b0)

leads a contradiction. Thus π ◦ h̄ = h ¤
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